Robust Visual Tracking via Coupled Randomness
نویسندگان
چکیده
Tracking algorithms for arbitrary objects are widely researched in the field of computer vision. At the beginning, an initialized bounding box is given as the input. After that, the algorithms are required to track the objective in the later frames on-the-fly. Tracking-by-detection is one of the main research branches of online tracking. However, there still exist two issues in order to improve the performance. 1) The limited processing time requires the model to extract low-dimensional and discriminative features from the training samples. 2) The model is required to be able to balance both the prior and new objectives’ appearance information in order to maintain the relocation ability and avoid the drifting problem. In this paper, we propose a real-time tracking algorithm called coupled randomness tracking (CRT) which focuses on dealing with these two issues. One randomness represents random projection, and the other randomness represents online random forests (ORFs). In CRT, the grayscale feature is compressed by a sparse measurement matrix, and ORFs are used to train the sample sequence online. During the training procedure, we introduce a tree discarding strategy which helps the ORFs to adapt fast appearance changes caused by illumination, occlusion, etc. Our method can constantly adapt to the objective’s latest appearance changes while keeping the prior appearance information. The experimental results show that our algorithm performs robustly with many publicly available benchmark videos and outperforms several state-of-the-art algorithms. Additionally, our algorithm can be easily utilized into a parallel program. key words: online tracking, feature compression, online random forests
منابع مشابه
Enhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملRobust Tracking with and Beyond Visible Spectrum: A Four-Layer Data Fusion Framework
Developing robust visual tracking algorithms for real-world applications is still a major challenge today. In this paper,we focus on robust object tracking with multiple spectrum imaging sensors. We propose a four-layer probabilistic fusion framework for visual tracking with and beyond visible spectrum imaging sensors. The framework consists of four different layers of a bottom-up fusion proces...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملReal-Time and Robust Visual Tracking
Visual tracking has been extensively studied because of its importance in practical applications such as visual surveillance, human computer interaction, traffic monitoring, to name a few. Despite extensive research in this topic with demonstrated success, it is still a very challenging task to build a robust and efficient tracking system to deal with various appearance changes caused by pose v...
متن کاملRobust model-based tracking with multiple cameras for spatial applications
This paper proposes a real-time, robust and efficient 3D model-based tracking algorithm for visual servoing. A virtual visual servoing approach is used for 3D tracking. This method is similar to more classical non-linear pose computation techniques. Robustness is obtained by integrating an M-estimator into the virtual visual control law via an iteratively reweighted least squares implementation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IEICE Transactions
دوره 98-D شماره
صفحات -
تاریخ انتشار 2015